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The axisymmetric and non-axisymmetric motions of a viscoelastic fluid driven by
the steady rotations of a pair of coaxial, parallel discs, each of infinite extent, are
studied analytically and numerically. The constitutive equation and the equations of
motion depend altogether on four parameters and the numerical scheme used is
robust and is capable of discovering regular and limit point bifurcations as well as
folds arising from the changes in the values of the parameters.

First and foremost, the work reported here is an exhaustive collection of old and
new results in the above flow problem, including the stability of the axisymmetric
flows. Non-existence of bifurcations from the rigid body motion and their appearance
from the torsional flow and other flows are found under a variety of conditions,
extending from the newtonian to the non-newtonian fluid behaviour. Secondly, the
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468 1. Crewther, R. R. Hwilgol and R. Jozsa

use of a scaling lemma permits the determination of the solutions to the problem over
the entire range of parameters from the known solutions obtained for a finite range
of the parameters. Thirdly, the type of non-axisymmetric flows likely to occur in the
two-disc problem are determined numerically and they show that slip-layers may
exist in the flow regime. These findings seem to confirm the experimental observations
in the coaxial flow of a non-newtonian fluid.

1. Introduction

Nearly 70 years ago, von Karman (1921) showed that the problem of finding the non-
steady radial, azimuthal and axial velocities in an incompressible newtonian fluid
undergoing an axisymmetric motion induced by the rotation of an infinitely wide
disc could be reduced to finding the solution of a pair of nonlinear, coupled ordinary
differential equations. Thirty years later, Batchelor (1951) considered the same
problem when the fluid is confined between two parallel discs, each infinitely wide,
and rotating about a common axis at speeds which could be different from one
another. In the three decades and more since Batchelor’s paper, much work has been
done on these problems, both on the questions of existence and multiplicities of
solutions and the numerical techniques of generating them. A survey of the analytical
aspects is given by Parter (1982), while the theses by Szeto (1978) and Fier (1984)
contain a great deal of material about the numerical work done on the axisymmetric
two-disc problem.

As far as viscoelastic fluids are concerned, Phan-Thien (1983a) was the first to
demonstrate that the solution of the time-dependent flow between rotating discs for
a Maxwell fluid could be reduced to solving a system of coupled ordinary differential
equations, consisting of the equations of motion and the constitutive equations.
Subsequently, Phan-Thien (198356) showed that the same situation arises with the
Oldroyd-B fluid (Oldroyd 1950), which includes the newtonian and the Maxwell
fluids as special cases.

Next, Huilgol & Keller (1985) laid the groundwork for finding the multiple
solutions to the axisymmetric problem of the steady flow between rotating discs of
an Oldroyd-B fluid. In particular, they showed by a scaling lemma that to examine
the entire solution set it was sufficient to find the solutions for a restricted range of
the angular velocity ratio of the top disc to that of the bottom one; see below for a
precise statement. Unfortunately, their numerical scheme had some drawbacks and
these were corrected by Walsh (1986, 1987), who converted the non-homogeneous
boundary conditions on the stresses into homogeneous ones by a set of trans-
formations of the constitutive equations and obtained a stable numerical scheme.
In addition, Walsh was the first to show that bifurcations from a steady torsional
flow occur; he established this by analytical means and verified that his numerical
scheme agreed with the theoretical predictions. On the other hand, his scaling
parameter did not enable him to study bifurcations from the rigid body motion,
while our procedure does. See §2 below.

Now, Walsh’s work (1987) was mainly concerned with axisymmetric flows of a
Maxwell fluid. The extension to the Oldroyd-B fluid was first made by Crewther &
Huilgol (1988). It has been vastly extended in the research reported here and,
independently, by Ji et al. (1990). In our work, in Part A, we exhibit many examples
of axisymmetric steady velocity fields for varying values of the four physical
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Flows of a non-newtonian fluid 469

parameters : the Reynolds number R, the angular velocity y of the top disc assuming
that the bottom disc has an angular velocity of unity, the relaxation time A and the
retardation time f. In addition, the bifurcation of solutions is discussed from both
the analytical and the numerical perspectives. A similar set of objectives have been
met by Ji et al. (1990) in their work. However, their work does not discuss the
linearized stability of the flows they consider.

The first to do so systematically was Walsh (1986, 1987) who considered the
linearized stability of steady, axisymmetric flows by resorting yet again to
transformations of the constitutive equations. Using the latter, he obtained the
analytical criterion for the linearized stability of a torsional flow and verified that his
own condition for bifurcation from the steady torsional flow and Phan-Thien’s
(1983b) criterion for its stability were identical. In this paper, we use a set of
transformations which are different from those of Walsh and having obtained by
analytical means a condition for the stability of a torsional flow, we verify that our
numerical scheme is also in agreement with it. Proceeding further, we examine the
linearized stability of other flows by numerical techniques. This work places our
research apart from that of Ji et al. (1990).

We now turn to steady non-axisymmetric motions in the above two-disc
configuration. As far as newtonian fluids are concerned, Berker (1979) was the first
to show that such solutions exist; he dealt with the case when the two discs were
rotating with the same angular velocity. Next, Parter & Rajagopal (1984) examined
the situation when the angular velocities were unequal; some numerical results for
newtonian fluids were also published by Lai et al. (1984).

Turning to viscoelastic fluids, we find that Huilgol & Rajagopal (1987) were the
first to show that in the Oldroyd-B fluid, non-axisymmetric motions occur. The
important point about the non-axisymmetric motions in the newtonian and
Oldroyd-B fluid is that these extra flow components are determined by the combined
effects of the axisymmetric velocity field and the pressure gradient in the plane
orthogonal to the axis of rotation.

In this paper, in Part B, we exhibit many examples of the non-axisymmetric
steady velocity fields for varying values of the four physical parameters mentioned
above. Our work is an extension of the earlier one reported by Crewther & Huilgol
(1988). We remark in passing that the work by Ji et al. (1990) does not discuss any
non-axisymmetric flows.

We note that Rajagopal (1991) has also prepared a review of the two-disc problem
for newtonian and non-newtonian fluids. The aims of the present work and his are
different for we are interested in exploring in detail the behaviour of a particular
fluid, whereas he has surveyed the problem at a general level. In sum, it is believed
that the present paper provides the most comprehensive picture of the flows of the
Oldroyd-B fluid in the two-disc problem.

We now comment on why there is no mention of loss of hyperbolicity in the present
work. To explain this, consider the chapter 11 of the recent book by Joseph (1990),
where he has collected together the previous results by himself and his collaborators.
He examines the behaviour of the Maxwell model in the axisymmetric flow between
coaxial discs when the angular velocity ratio y does not equal 1, i.e. when the discs
rotate at different speeds. Joseph is concerned with the situation when the basic flow
is such that there is a loss of hyperbolicity and hence the equations for the stress
functions and the equations of motion in §3 below, with g =0, lead to ill-posed
problems. The loss of evolutionarity means that small changes in initial data lead to

Phil. Trans. R. Soc. Lond. A (1991)
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470 1. Crewther, R. R. Hutlgol and R. Jozsa

large changes in the stresses or the velocity field. Our numerical results for the
Oldroyd-B fluid, the main concern of the present research, show that as far as the
velocity fields are concerned the problem is well posed on primary branches, a topic
of concern to Joseph (1990). We are unable to say whether the problem is ill posed
or not on other sheets. Of course, if we were to look at the Rayleigh problem (Tanner
1962) for the Oldroyd-B fluid for guidance on this matter, we find that the Maxwell
model permits the sudden jump in the boundary velocity to propagate as a wave (of
decreasing amplitude) whereas the Oldroyd-B fluid behaves like a newtonian fluid in
the way the velocity disturbance is diffused. It seems to us therefore that loss of
hyperbolicity has implications for the Maxwell fluid and not the Oldroyd-B fluid, and
hence this question has not been investigated in the present paper.

2. The constitutive equation

In direct notation, the constitutive equation for the extra stress tensor S in an
incompressible Oldroyd-B fluid (Oldroyd 1950) is described by

S+ A4,(S—LS—SL") =y [ A, + A,(A,— LA, — A, L"), 2.1)

where L is the velocity gradient corresponding to the velocity field #, 4, is the first
Rivlin—Ericksen tensor (Rivlin & Ericksen 1955), the superscript T denotes the
transpose, with the three constants %,, 4, and 4, being the viscosity, the relaxation
time and the retardation time respectively. As is customary, it is assumed that
0 < 4, < 4,. In addition, the superposed dot denotes the material derivative, i.e.

A, =0A,/0t+VA, b, (2.2)

where the partial derivative is with respect to time ¢ and V is the spatial gradient
operator.

Since we concentrate on the two-disc flow in this paper, let it be assumed that the
lower disc rotates with a constant angular velocity €,. Using this, we can scale the
angular velocity £, of the upper disc and the other quantities as follows:

Q, =y, —w<y<ow,
=00, S=74,2,8, A=Q,4,, (2.3)
p=A4,/4,, 0<p<I1.
With the above scaling the constitutive equation (2.1) now takes the form
S+A(S—LS—SL") = A, +AB(A,—LA,— A, L"). (2.4)

In (2.4), L is the velocity gradient corresponding to v and A, is calculated from L.
For later use we note that the newtonian limit can be obtained from (2.4) in two
ways: either by setting # = 1 with A arbitrary, or by setting A = 0 and leaving g
arbitrary. Additionally, the Maxwell model is the consequence of setting # = 0 and
A#0.

We remark that Phan-Thien (1983a,b) as well as Walsh (1986, 1987) have both
used a different scaling parameter than the y used here. Because they take the
parameter to be equal to £2,/(£2, —£,), the casc of rigid body motions when the two
angular velocities are equal becomes a singular point in the governing equations and
Walsh (1986, 1987) is thus unable to discuss bifurcations from the rigid body motion.

Phil. Trans. R. Soc. Lond. A (1991)
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Flows of a non-newtonian fluid 471

PART A. AXISYMMETRIC MOTIONS

The plan of this part is as follows. In §3, we discuss the kinematics of steady,
axisymmetric flows and the differential equations satisfied by the stress components,
the transformed stresses and the equations of motion in terms of the latter. In §4, we
recall the two known solutions: the rigid body motion and the torsional flow. Next,
§5 is to establish that there are no bifurcations from the rigid body motion and to
prove, following Walsh (1986, 1987), that there are bifurcations from the torsional
flow. In §6, we discuss many examples of bifurcating flows from the torsional flow
and secondary bifurcations from the primary ones, using numerical techniques. The
effects of the Reynolds number R, the angular velocity ratio y, the parameters A and
S are described in detail. In §7, we turn to non-steady flows and list the differential
equations satisfied by the stresses and the transformed stresses, and the equations of
motion again in terms of the latter. The §8 is devoted to the analytical aspects of the
linearized stability of axisymmetric flows and a detailed examination of the stability
of the torsional flow. In §9, we study the stability of some of the flows in §6
by computation. Thus Part A presents a fairly full picture of the steady flows, along
with their linearized stabilities, of an Oldroyd-B fluid in the two-disc problem.

3. Steady axisymmetric flow equations

Assuming that the two infinitely wide, coaxial parallel discs are a distance d apart,
we can non-dimensionalize the radial and axial coordinates (7, %) so that

F=rd, Z=zd. (3.1)
We can now write the physical components of the velocity vector v as follows:
(U<7’>,U<6>,U<Z>) = (VF/,TG, '—2F)) (32)

where F and @ are unknown functions of z and the prime denotes differentiation with
respect to z in (3.2) and in the sequel throughout. Using the adherence conditions at
z =0 (the bottom disc), and at z =1 (the top disc), one finds that the boundary

conditions on F and G are:
F0)=0, F1)=0, GO)= 1,1 (3.3)
F0)=0, F1)=0, G) ='y.J '

If the velocity field given by (3.2) is used in the constitutive equation (2.4), it can be
shown (Phan-Thien 198356 ; Huilgol & Keller 1985) that the stresses are given by the
following set of equations:

SCrry = Sy +728y,  S<O6) = Sy + 728,

S<r0y = r*8,,, - 802y = 78,,, (3.4)
S<rzy = 184, S<zz) = S;,,
where 8,,,8,;, ..., Sy, are all functions of z. A fairly routine calculation shows that the

above functions meet a system of ordinary differential equations (Phan-Thien
19836 ; Huilgol & Keller 1985).

From these equations, it is obvious that the constitutive equations satisfied by Sy,
and S,, are identical. We shall assume therefore that these two functions are, in fact,
equal. This equality is also necessary if the equations of motion are to be solvable;

Phil. Trans. R. Soc. Lond. A (1991)
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for without this equality, the term (S{rr)—S{66%)/r in the r-component of the
equations of motion makes them incompatible with one another. This point is
discussed more fully by Huilgol & Keller (1985). A second bonus in assuming the
equality of S, and S,, lies in the fact that one can ignore these two functions for the
rest of this Part A, as far as the analytical or numerical treatment of the problem is
concerned. With this understanding, we proceed to discuss the remaining six
functions.

As Walsh (1986, 1987) has pointed out in connection with his set of stress
components, the remaining functions S,,, ..., S,, introduce numerical complications
because they require the values of /' and @’ on the boundaries z =0 and z = 1. In
particular, the troublesome ones are S,;, S;;, S5, Sy, and S,,. Now, because the
derivatives 87,, ..., S;, appear as multiples of ¥ and also because F(0) = F(1) = 0, one
can transform the functions S, ..., S,, so that the new functions 7}, ..., T}, will be
zero on z = 0 and on z = 1. Thus, following Walsh (1987), we define the new functions
as follows:

Ty =8 —2M1=p)F", Ty, = Sy —2A(1-p) G,
T, =8p—2M1-BF'&, Tyy = Sy — 0, (3.5)
Ti5 =817, Tyo = Sz +4F".

It now follows that the above transformed stress functions 7}, ..., T}, obey the

following system of differential equations:

Th—=2A[F (T +4X1 =) F"F"Y+ F"T,;] = 0,
To—ARE (T, + 201 =) (F"G' + F'G" )+ G T+ F'Tyt =0,
Ty —AR2FT = 2F" T+ F' Ty —2(1 =) (FF" —3F'F”)] = 0,
Too —2A[F (The +4A(1 =) G'G")V+ G'Ty,] = 0,
Toy—ALRF Ty —2F" T, + G'Ty +2(1 =) (F'G” —3F'G")] = 0,
Too—2A[F T3 —2F ' Tyy—4(1—p) (2F 2 —FF")] = 0.
Unlike the situation that occurs with systems of differential equations, the above set
is valid on the end points 2 =0 and z=1 because the differential equations
correspond to constitutive equations (Huilgol & Keller 1985). It is then very easily

verified that 7T},,..., T}, are all zero on z =0 and z = 1.

When the pressure term is eliminated from the » and z equations, the equations of
motion lead to the following:

3T =T+ Ty +H4A(1 =) BF'F" —G'Q")+ FY+2R(FF"+GF') =0, (3.7)
where the Reynolds number R is defined through:
R = pQ,d* /7, (3.8)

and p is the density of the fluid. The equation of motion in the §-direction gives the
second equation :

4T+ Ty +8A1 - F'G'+G"—2R(F'G—FG) =0, (3.9)

when it is realized that the pressure term is independent of the 6 coordinate.
In sum, the relevant equations for steady, axisymmetric motions of an Oldroyd-
B fluid in the two-disc problem are given by (3.6)—(3.9), with the boundary conditions

(3.3) for F', F” and (, and zero boundary conditions for the six functions 7}, ..., T},
appearing in (3.6).

Phil. Trans. R. Soc. Lond. A (1991)
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4. Two basic solutions

We now recall the nature of the two steady axisymmetric solutions to the above
set of equations. The first is the rigid body motion and the second is the torsional flow.

(@) Rigid body motion
In this situation, in the boundary conditions (3.3), the parameter v = 1 because

the top and bottom discs rotate with the same angular velocity. It follows therefore
that the entire body of the fluid can rotate as a rigid body, or

F(z)=0, GR)=1, (4.1)
for all values of R (i.e. inertia is included), A and £. From (4.1) we see that all the
stress functions 7}, ..., T}, in (3.6) are zero.

(b) Torsional flow

Here, the fluid body undergoes a shearing flow with the angular velocity changing
from 1 at the bottom disc to v at the top. Again, there are no radial and axial
velocity components. Thus

F(z)=0, GR)=1+(y—1)z. (4.2)
This solution is true for all values of A and f. However, the Reynolds number
R = 0, that is inertia must be ignored. Moreover, all the stress functions 7}, ..., T},

are zero ; note, however, that the original stresses are not all zero. In fact, from (3.5)
it follows that the non-zero stresses are

S = 2110 s
Sps=7y—1. .

5. Bifurcations from the basic solutions

To study bifurcations from a known solution, we assume that each of the functions
F, G, T,,..., Ty can be represented as:

Uz;€) = U(2) +eu(z) + O(e?), (5.1)

where U(-) stands for any of the eight functions F, G, T},, ..., Ty,; U°(+) denotes the
value of each in the primary flow situation and w(-) is the first-order perturbation
term. Thus in §5 we let (f,g,¢,,...,t5) stand for the perturbations in (F,G, Ty, ...,
Ty,) respectively.

Now, as far as the stress perturbations ¢, ...,¢;, are concerned, one can obtain
those relevant to the torsional flow from (3.6) by using the flow (4.2) as the primary
one. These stress perturbations can also be made pertinent to the rigid body motion
simply by putting the parameter y = 1 in the ensuing results. Because the functions
Fo, 1, ..., TS, are all zero in the torsional flow, and

) =14+(y—1)z, (5.2)
it follows that the perturbation stress functions obey the following:
by =ty = lyg = 13 =0,
by = —122%(1L =) (y — 1)*f", (5.3)
tyy = —6A(1=p) (y=1)f",
Phil. Trans. R. Soc. Lond. A (1991)
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where f and ¢ represent the respective perturbations of F and (. Of course, in
deriving (5.3), all terms of order O(¢?) have been ignored. Also, it must be noted that
on the boundaries z = 0 and z = 1, the perturbations f,f’",¢,t,,, ..., t5, are all zero.

(@) Rigid body motion
In this case, we known from (5.3) that ,, = 0 because v = 1. Thus the equations
of motion (3.7) and (3.9) lead to:

fiV+2Rg = 0,1

54
g’ —2Rf’ =0.) 64
If we multiply the first equation by f, use the boundary conditions
J0) = f(1) =0,f(0) = f(1) =0, (5.5)
and integrate by parts, we find that
1 1
f [ dz+2Rf fg'dz=0. (5.6)
0 0

Next, multiply the second equation in (5.4) by ¢, use the boundary conditions
9(0) =g(1) =0, (5.7)
and integrate by parts. We have

1 1
—f g’zdz+2Rf fg'dz = 0. (5.8)
0 0

If we subtract (5.8) from (5.6) it is found that the two functions f”(z) and ¢'(z) are
both identically zero on the interval 0 < z < 1. Using the boundary conditions (5.5)
and (5.7), it is trivial to prove that (Crewther & Huilgol 1988)

flz)=0, g()=0, 0<z<1. (5.9)

Hence we have shown that there are no bifurcations from the rigid body motion in
the two-disc flow for the Oldroyd-B fluid (Crewther & Huilgol 1988). As remarked
earlier, Walsh (1986, 1987) is unable to discuss the case of bifurcations from a rigid
body motion because the scaling of the angular velocity has been done through the
ratio £,/(£2, — £,) and this becomes infinite in a rigid body motion. Parenthetically,
we remark that our result shows that there are no bifurcations from the rigid body
motion for a newtonian fluid either, although such a result was established earlier by
Jerutti (1975) according to Parter (1982).

(b) Torsional flow
Turn now to the equations of motion (3.7) and (3.9), put B = 0 there, and use (5.2)

and (5.3) to the effect that ¢,,, t,,, and ¢, are all zero and that ¢,, and ¢,, are non-zero.
It then follows that

SRR =4) (y—1)f"—4A(1 =) (y—1)g" = 0, (5.10)
2A(1—pB) (y—1)f"+g" = 0. (5.11)

Eliminating ¢” from the above equations, we find that (Walsh 1986, 1987)
SV 448" =0, (5.12)

Phil. Trans. R. Soc. Lond. A (1991)
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where the parameter § is given by
=X21—=p)(y—1)3+2(1—7p)]. (5.13)

Using the boundary conditions (5.5) we find that the equation (5.12) has non-trivial
solutions whenever ¢ satisfies the equation:

0sin 26 +cos 28 = 1. (5.14)
This transcendental equation has two sets of solutions:
0 =mnm, n=0,1,2,...,1

5.15
0 = tand. J ( )

We can disregard n = 0, for this leads to a trivial solution of (5.12). It is thus clear
that (5.12) has an infinite number of bifurcating points and that each is simple.
Without this knowledge, in the numerical scheme that Huilgol & Keller (1985) tried
earlier attention was focused on finding simple bifurcation points only. It now turns
out, due to the efforts of Walsh (1986, 1987), that this was indeed the right decision.
Thus in the next §6 we find simple bifurcation points only and trace out the
consequences of this assumption. It particular, it is clear that the parameter ¢ can be
changed by varying any of the three parameters A, # and . It is thus not surprising
that the solution set for the two-disc problem has such a rich structure.

6. Numerical study of bifurcations from steady axisymmetric flows

Before we discuss the method adopted to find the bifurcating solutions from any
known solution, we wish to point out that the angular velocity ratio parameter y
used here permits the following Scaling Lemma (Huilgol & Keller 1985) to be proved.

Scaling Lemma. If the functions F,G, T, ..., Ty, of z in 0<z<1, and the
parameters R A, B,y solve the system of equations (3.6), (3.7) and (3.9), tken tke Sfunctions
F.Q,T,, ... T, of in 0< <1 and the parameters B, X, B, solve the problem under
the tmnsformatwm

{=1-z R=[IR A=y, f=p 7=1/7,
F@) ==F@/yl. G =060y

Tn = Tu/lyl, le =Tyu/7, (6.1)

Tw =—="Ty/IYl, Tzz = T/l7l,

Tzs =—"Tu/y, T30 = Tso/lyl-

The above lemma, which is easily proved, shows that we need only consider vy in the
strip —1 <y < 1 to obtain solutions for v in —oo <y < co. We remark that such a
lemma is not provable under the scaling laws assumed by Phan-Thien (1983a, b) and
Walsh (1986, 1987).

We now describe the numerical scheme adopted to solve the equations (3.6), (3.7)
and (3.9). First of all, to use the programme of Fier (1984) and to compare our results
with his, we convert the above three sets of equations into a second-order system. To
this end, let us define a new variable H through

F’=H. (6.2)

Phil. Trans. R. Soc. Lond. A (1991)
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Next, to minimize the band width in the computational scheme, we rewrite tile full

system as:
Ty, —2A[F(T, +4X(1—p)HH')+ HT,,] = 0,

3T, — T+ Ty +4A(1— p) BHH — G'G")+ H' + 2R(FH' + GG') = 0,
T\, — A[2FT,,— 2F'T,, + HT,, — 2(1 — B) (FH' — 3F"H)] = 0,
AT, + T+ 8A(1— ) CH +G" —2R(F'G—FG') = 0,
Ty, — A[2F(Ty + 20(1— B) (VH' + G"H)) + G'Tyy + HT,,] = 0, | (6.3)
T,y — 2A[F(T)y +4A(1 — B) G'G") + (' Ty ] = 0,
F'—H=0,
Ty — A[2F Ty — 2F Ty + G Ty + 2(1— B) (FG” —3F'G')] = 0,
T, — 2A[F T,y — 2F Ty — 4(1— B) (2F"* —FH)] = 0.

The above system is of second order with nine equations and 18 boundary
conditions, the six imposed ones on ¥, F” and G and the twelve natural ones on the
stresses Ty, ..., Ty To solve this system, we set up a mesh by dividing the interval
[—1Az,1+1Az] into J equal subintervals, where Az =1/(J—1). The discretized
equations are obtained by making the following substitutions:

U9j+1 =T U9j+2 = Tis, U9j+3 =T,
Ugpra =Ty, Ugps =H, Ugjre = @, J=0.1,../J. (6.4)
U9f+7 =F, U9f+s = T23; U9j+9 = Ty,

Next, we write the difference equations about the end points of the subintervals and
use the standard three-point formulae to approximate the first and second
derivatives. We approximate the boundary conditions at z = 0 and z = 1 by using
the mesh points j =0, j=1 and j=J—1, j =J respectively with averages for
function values and differences for the derivatives. That is, let V stand for any of the
nine variables and number the mesh points j from 0 to J. :

At the end point z = 0, one has

V() =3(Vo+ V1), V(0) = (1/A2) (V, = V), (6.5)

where V, and V, stand for the values of V at the mesh points j=0 and j=1
respectively. A formula similar to (6.5) holds for V(1) and V'(1) at the end point
z=1. At an interior point z;, we set

V)=V, j=1,...,d—1. (6.6)
Then, Vi= (Viey— Vi_y)/ 24z, } 67
Vi= (Vi1 —2V;+ V) /A%

Using the above central difference formulae, we recast the system (6.3) into a set of
algebraic equations which we denote by the operator equation

G(U,R,v,A, B =0. (6.8)

In recent years, much work has been done on the solution of equations such as (6.8)
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c @ 5 w
7:; >anit point % v
%] 2]
; BP

Parameter Parameter 1

Figure 1. () Regular bifurcation point (8BP) and limit point. (b) Limit point and a fold.

to find regular bifurcations, limit points, folds, etc. For a full description of the
techniques, see Keller (1987). Here, we have illustrated some of these terms in figure
la and b.

As mentioned earlier, we have used the program of Fier (1984) to solve the system
(6.8). The reader’s attention is drawn to the book by Keller (1987) and Fier’s thesis,
where the requisite mathematics is described fully. Briefly, the program of Fier
depends on a number of subroutines which use the methods of regular and pseudo-
arc-length continuations ; methods to locate both regular bifurcating points and limit
points; techniques to switch solutions at regular bifurcating points and to follow
folds.

Consistency check. Because the program to solve (6.8) is rather large, it is necessary
to devise a consistency check to ensure that the program functions correctly. Of
course, the program must give the right answers for the rigid body motion (4.1) and
the torsional flow (4.2). Unfortunately, these two do not provide a sufficiently good
check because so many terms are zero. Hence we devised two continuation problems
based on the fact that the newtonian solution can be obtained from the Oldroyd-B
fluid solution through two limits: by setting A = 0 and leaving g arbitrary, or by
putting # = 1 and leaving A arbitrary. The authors will supply the interested reader
the full details of these calculations.

To check that the subroutines to discover the regular bifurcating points and the
switching of solutions performed correctly, we chose to demonstrate that no
bifurcation points arise from the rigid body motion and that those that emanate
from the torsional flow meet (5.12) and (5.13).

Unfortunately, we were unable to devise any means of checking whether those
subroutines concerned with limit points and fold continuations functioned accurately
for the Oldroyd-B fluid, although these subroutines produced results in agreement
with those results of Fier (1984) for the newtonian fluid, obtained by putting A = 0
in the relevant equations.

By solving the discretized equations (6.8) and using J = 49 subintervals, we
obtained, literally, hundreds of solutions. From this set, we have selected those that
are interesting in themselves or those that could be compared with the work of Walsh
(1986, 1987) or Ji et al. (1990). These are described below in six groups. In all of the
six groups, we have depicted the variations from the torsional flow, i.e. ¥(z) and

AG(z) = G(2)—[1+ (y—1)2]. (6.9)

Example Set 1

In this set, we keep y = — 0.5, i.e. the top disc is set to rotate at half the speed of the
bottom one in the opposite direction, and = 0.5 fixed. Attention is now drawn to
figures 2-6, where we have sketched the graphs of the functions ¥ and AG.
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[ Figure 2
0.008 0.004 _Figure 3
WA - T~ o L= -

~0008F -0.004
. . ) . | 1 .
0.004 [~ Figure 4
0008 Figure 5
0.003%
0.004
0.0021
0
0.001F
-0.004
0
0 07 oz Z o 53 To o008 )
Figures 2-5. ——, AG; —— , F.

Figure 2. Solution on the first bifurcation branch off torsional flow. R = 4.3 x 10713, A = 2.0. See §86,
Example set I for additional information regarding figures 2-6.

Figure 3. Solution at the first limit point obtained by changing R = 0 to R = 0.24 while keeping
A = 2.0 fixed.

Figure 4. Solution at R =0.99 and A =1.0. Unable to generate non-axisymmetric flow for
this one.

Figure 5. Solution at one more limit point with R = 1.4 and A = 3.9.

Figure 6 Fold
disappears Fold
disappears

| | | 1
1 2 3 4 5

Figure 6. The folds in the RA-plane. Here BP denotes a regular bifurcation point.

The procedure to generate this set is as follows: begin with the torsional flow
solution using R =0, y =—0.5 and f# =0.5. Vary the parameter A and use the
relevant subroutines till the first bifurcation point is reached. From (5.13) and (5.15)
we see that the first bifurcation point occurs when § = ©, or when A = 1.481. Follow

Phil. Trans. R. Soc. Lond. A (1991)
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0.01

[~ Figure 7
& 0-002" Figure 8

-

-0.004 -

-0.01—
-0.008 r

-0.02 1 1 1 | -] -0.0120

0.8

Figure 10

0.6
0 R
0.4
-0.01
0.2
-0.02
1 1 L 1 J 0
0 0.2 0.4 0.6 0.8 1.0 0 0.1 0.2 0.3
z N ﬁ . 8

Figures 7-10. ——, AG; ——— L F.

Figure 7. Solution with R =50 and £ = 0.98. The flow pattern in an almost newtonian fluid.
See §6, Example set IT for more information regarding figures 8-10.

Figure 8. Solution at a limit point with R =0.73 and g =0.0. The flow pattern in a
Maxwell fluid.

Figure 9. Solution at a limit point with R = 0.1 and g = 0.3.

Figure 10. The folds in the Rf-plane. Again, BP denotes a regular bifurcation point.

the new path until the value of A = 2. The solution so obtained is in figure 2. If we
now keep three parameters fixed and change B from 0 to 0.24, we derive at a limit
point and figure 3 illustrates the functions F and AG. It is clear that the symmetry
of the solutions has disappeared in going from R = 0 to B = 0.24.

Proceeding in the fashion described above, we have obtained a variety of flow
curves and these are illustrated in figures 3-5. In the last figure 6, the rich bifurcation
structure is depicted by showing the bifurcation points and folds in the RA-plane. It
is found that when the folds in the RA-plane disappear, the solution surface becomes
smooth.

Example Set 11

Here, we keep y = 0.5 and A = 3.6, which is a rather large value for the relaxation
time, fixed and vary R and . The value of # = 0 corresponds to the Maxwell fluid
and that of # =1 to that of the newtonian fluid. The results are drawn in figures
7-10, with the last one being that of the folds in the Rg-plane.
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04 Figure 12 02383
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o °:° °
o
136r Figure 11 °°:°°°
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A=0~l,°% ¢
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100 200 30
R
Figure 14
0.01~
b
° Figure 13 L
= =025 002k
_0‘02_
y -00uf
-0.04
-006F
-0.06 I 1 1 1 J -0.08 1 1 1 L |
0 0.2 0.4 8 0.6 08 1.0 0 0.2 a0 08 1.0

Figure 11. In Example Set IIT of §6, bifurcation points for y = — 1 while varying R from 120 to 138,
p from 0 to 1 and A from 0 to 0.2 are drawn.

Figure 12. In Example Set IV of §6, folds in the Ry-plane for the Maxwell fluid with # =0
and A varying from 0 to 0.1 are depicted.

Figure 13. In Example Set V of §6, folds in the fy-plane with R = 200 and A varying from 0.05
to 0.25 are drawn.

Figure 14. In Example Set VI of §6, solution at first limit point obtained with R = 200,
B =05, A=005and y=—0.0055. ——, AG; ,F.
Example Set 111

Here, the computed bifurcation points when the three parameters R, A and f are
varied by keeping y = —1 fixed are shown in figure 11.
Baxample Set IV

Here, in figure 12, we show the folds in the Ry-plane when the Maxwell model, i.e.
£ =0, is examined.
Example Set V

Figure 13 depicts the folds in the fy-plane when R = 200 and A varying from A =
0.05 to 0.25 for extremely small speeds (y) of rotation of the top disc.
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°C  Figure 15

-0.02
Y
-0.04
-0.06 | ] | J
0 0.1 0.2 0.3 0.4
A

Figure 15. Folds in the yA- plane with R = 200 and g varying from 0 to 0.5.

Example Set VI

Suppose we begin with R = 200, f = 0.5, A = 0.05 and y = 1, i.e. when the fluid is
undergoing a rigid body motion, and decrease the value of y. Then the first limit
point is obtained at the value of y = —0.0055 and figure 14 shows this solution. The
last figure 15 is that of the folds in the yA-plane with B = 200 as f varies from 0.0
to 0.05.

7. Non-steady axisymmetric flows

Here we assume that the velocity field is described in terms of two functions
F(z,t) and G(z,t) and that the flow components are given by (cf. 3.2)):

(w<r>,v<0),v{z)) = (rF", r(, —2F), (7.1)
where the prime denotes partial differentiation with respect to z. The boundary
conditions on the functions are:

F(0,t)=0, F(1,t)=0, G0,t) = 1,1
F(0,6)=0, F(1,)=0, G(1,t)=1y.]
Given the velocity field (7.1), it can again be shown (Phan-Thien 1983b) that the
stresses are given by the set of equations as written in (3.4) above, except that the
eight functions S,y,S;,, ..., Sy, are now functions of z and ¢. For the sake of brevity, we
omit the equations satisfied by the functions S, and S,, and assume that these

functions are equal. We now list the differential equations satisfied by the remaining
six functions:

(7.2)

S+ /\(Sll —2F8], —2F"8,;) = —2BAF",
S+ A(S,,—2F 81, — G'S y—F"Sy,) = —2PAF" G,

Sy + A0S — 2F S}y + 28815 —F"Sy0) = F” + BA(F” +6F'F” —2FF"), 7.9)
Sy + A(Sgy — 2F S5, —2G'S,,) = —2/AG",

S5+ A(S gy — 2F 855+ 2F' Sy — G'Syy) = G + AG +6F' G’ —2FG"),
Ss0+ A(Sy— 2F S5 +4F'Sy,) = —4F —4fA(F' —2FF” +4F"?).

The equations of motion for the unsteady flow problem are given by:
387, — Sy + 87, = R(F"—2FF" —26G'),| 74)

48, + 85, = R(G+2F'G—2F(). |
Phil. Trans. R. Soc. Lond. A (1991)
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In the above set (7.3) and (7.4), the superposed dot denotes the partial derivative
with respect to ¢, whereas the prime denotes the partial derivative with respect to z.
In the steady flow situation, we followed Walsh (1986, 1987) and introduced a set of
stress functions which vanished on the boundaries 2=0 and z= 1. Here, we
introduce a new set of stress functions to facilitate the treatment of the linearized
stability problem in §8. The basic idea behind the transformations is to have the time
derivatives appearing in the simplest possible way in the constitutive equations and
the equations of motion. Thus we combine the two time derivatives which appear in
(2.4) and replace S by W, which we define through:

S=W+pA,. (7.5)
As a consequence, the following relations exist between the stress functions S; and
the W;:
Sp= Wi, Sy =Wy+pF”,
Spp = Wi, Syy = Wo+ B¢, (7.6)
Syy = Wy, Sz = Wy —4pF".
Indeed, the above transformations have the effect of removing the time derivatives
from the right side of the equations affecting S,,, S,;, and S, in the list (7.3), as well
as removing all the nonlinear terms from the right side of the constitutive equations

for the S;; in (7.3). In terms of the new stress functions Wj;, the constitutive equations
are given by:

Wyy + AWy —2F Wi —2F"W,,) = 0,
Wy + A(Wyy—2F Wy — Q' W,y — F"Wy,) = 0,
Wla+A(Wm—sz3+2F’W13—F”W30) =(1—p)F”, -
Way + A(Wyy — 28 Wiy — 26/ W,y) = 0,
I/V23'*"\(W/za_2FI/V;3"'QF/I/V%_G/I/Vao) = (l_ﬂ) &,
Wao+ A(Wyy— 2F Wiy +4F' W,) = —4(1— ) F'.
Next, the equations of motion are:
BEY +3Wi — Wi+ Wiy = R(F”—QFF”’—2GG’),1 7.8)

PG +4W,,+ Wiy = R(G+2F'G—2F), |

For future use, we note the boundary values taken by the above six functions when
the flow is steady. These values are:

W, = 2A(1 —ﬂ)F”Z, W,y = 2A(1— ) G2,
W, = 2M1-p) F'&, Weye =(1-p &, (7.9)
Wiy = (1_,3) F”, Ws = 0.

8. Analytical aspects of linearized stability

In this section, we consider the systems of equations (7.7) and (7.8) and linearize
them about a steady flow, assuming that the perturbations have the form used in
linearized stability calculations. Thus let V stand for any of the variables (F, &, W,,,

., Wyo) and let

V(z,t,€) = V°(2) + eetv(z) + O(e?), (8.1)

Phil. Trans. R. Soc. Lond. A (1991)
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where V° denotes the steady-state value and » the perturbation term. Letting (w,, w,,
w,, ..., wg) stand for the perturbations in the variables (¥, G, W,,, ..., W,,) respectively
and expanding (7.7) and (7.8) to the first order in €, the result is:

oRw| = fuwy’ + 3wy —wi+wj )
+2R[Fw] + F*" w, + Qwy + G%w,],
oRw, = pw, +4w,+w;
+2R[FOwy—F"w, + Q°w, — G®w],
TAWw, = —w, + 2A[Fw;+ Wi w, +F" wy + Wi wi],
oAw, = —w, + A[2F %, + 2W w,
+G%wy+ W wy+Fw, + W wi],

H
A, = —wy + (1 — B) !+ A[2FOu], — 2F"w, 52
+2W o w, —2We, wi +F"wg+ W, wy],
TAwg = —we+ 2A[Fw; + Wi w, + G%w, + Wo, wy],
cAw, = —w,+ (1 — ) wy+ A[2Fw, — 2F " w,
+2W3 w, —2Wh, wi + G%wg + Wi wy],
oAwg = —wg—4(1— ) w}
+ 2A[FOw) — 2F " wy + W w, —2Wo w]. |
The boundary conditions on w,,w; and w, are of course given by
w(0) =0, w(1) =0, wy(0) =0, 8.3)
wi(0) =0, wi(1)=0, wyl)=0.]
Thus (8.2) constitutes an eigenvalue problem for o of the form
Aw = oBw. (8.4)

We now derive the basic equation that governs the linearized stability of the
torsional flow. Put R = 0 in (8.2), use the velocity field (4.2) of the torsional flow so
that

F'z) =0, (%0)=1+(y—1)z, (8.5)

and use (7.9) to find that
Wiy = Wi, = Wiy = W, =0,
Wo =2A(1—4) (y—1), (8.6)
Wy = (1—f) (y—1).
Then the system (8.2) leads to the eigenvalue problem
wlV+4&w] =0, (8.7)
where the parameter £ is given by

(1= p) (y—1))[3+2(1—p)+ Ao(4+A0)]
B (14 A0)%(1+ Afo)? ’

£ (8.8)

Phil. Trans. R. Soc. Lond. A (1991)
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Figure 16. The first four eigenvalues for the stability of the torsional flow. ¢ as a function of A,
while keeping R =0, § = 0.5, y = —0.5 fixed. See (8.11).

Setting o = 0 in (8.8), we recover (5.13) as we should. Again, it follows that (8.7) has
non-trivial solutions only if

E=nn, n= 1,2,...1
£=tan§. J

The smallest root of (8.9) is § = m. Using this in (8.8) and putting o = 0, one recovers
the result of Phan-Thien (19835) that the torsional flow is unstable if

T = (1= f) (y—1)°[3+2(1— ). (8.10)

Of course, this result is to be expected because (8.4) is a linear eigenvalue problem
for o, and when this parameter is zero, (8.4) is equivalent to seeking bifurcations from
the steady torsional flow and this is why (5.13) and (8.8) lead to identical results.

Now in order to compare the theoretical results with their numerical counterparts,
consider the case when = 0.5, y = —0.5. Then, for each value of £, (8.8) gives the
relation

(8.9)

T(A) = 2 1/E—1/A. (8.11)

Our numerical calculations have verified that the formula (8.11) represents the
crossing of a single real eigenvalue of (8.2) from the negative to the positive real axis.
Thus, in the case when f=0.5, y=—0.5, R=0, as A is increased from 0, the
torsional flow is stable up to A; = 1.481 and unstable beyond that. At each successive
value of A obtained from the relation

A =88, (8.12)
another eigenvalue o; crosses to the positive real axis and remains positive for all
A > A;, being asymptotic to

o, = 1/A,. (8.13)
This is depicted in figure 16.
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9. A numerical examination of stability of axisymmetric flows

The system (8.2)—(8.3) was discretized on the same mesh that was used for the
steady-state calculations in §6. That is, we divide the interval [ —}Az, 14+3Az] into J
subintervals, where Az = 1/(J—1). The finite difference approximations used at the
interior mesh points 2 < j < J—2 for any variable V are given by (cf. (6.5)—(6.7)):

Vi=V(z),
Vi=(Visa— Vi) /2A%,
Vi= (Vi =2V + V,)/AZ2, (9.1)

V;'” = (Vj+2 _2Vj+1 + 2Vj—1 - Vj_z)/QAz?’,
ViV = (Vi =4V +6V,—4V,_ + V) /A%
At the boundaries, we have (for j=0, 1, J—1, J):
V) =3h+Vy), V) =30, +V,m), |
V(0) = (V= Vo) /A2, V(1) = (V,—V,_,)/Az]

The above formulae are all central difference formulae, accurate to O(Az?). Note that
the derivatives V” and V¥ are not required at the mesh points 0,1,J—1,J where
the boundary conditions for w, and w; are implemented. This can be seen in the
construction of the matrices 4 and B below.

Now, as stated in (7.5) we have converted the system of constitutive equations
from that relevant to the stresses S to that valid for W. A glance at (7.9) shows that
we need F” and G’ at the end points z =0 and z = 1. Since (9.2) cannot provide the
values of F7(0) and F”(1) we use the forward difference O(Az)-approximation instead.
That is, we write

(9.2)

F’(0) = (F,—2F, + F,)/ Az } (9.3)

F'(1)=(F,—2F,_,+F,_,)/ Az

Although this results in a slight loss of accuracy, the scheme was found to work well
in providing the eigenvalues, except close to singular points where the eigenvalues
become small. An alternative approach using a consistently second-order scheme as
in §6, would have resulted in a very complicated form for the matrix B of (8.4) under
discretization. The success of our method made it unnecessary to investigate this
approach, a conclusion also reached by Walsh (1986) in his thesis.

We shall now describe the construction of the discretized version of the matrix B.
Symbolically, the operator B can be written as (cf. (8.2)—(8.4)):

B = diag [Rd*/d?*, R, A, ..., A], (9.4)

which has this simple diagonal form because of the choice of variable in (7.5). Next,
let the number of intervals J = 25. Then define a (J+ 1) x (J+ 1) matrix D, through

1 1 o . . . .0
i -1 0 . . . .0
o 1 =21 0 . .0
D, = (9.5)
0 01 -2 1 0
0 0o 1 -1
0 0 1 1

Phil. Trans. R. Soc. Lond. A (1991)


http://rsta.royalsocietypublishing.org/

\
\
8 \
i

a
//\

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A
A \
)

[

y 9

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

486 1. Crewther, R. R. Huilgol and R. Jozsa

Clearly, the matrix D, takes care of the boundary values of w, and its derivative w;
as well as the derivative w] in the interior. Next, define a second (J+1)x (J+1)
matrix M through

110
01 0 0
0 0 1 0
M= (9.6)
O....lOO
0 10
0 11

This matrix is to take care of the boundary values of w, and its interior
representation. Finally, let I, denote the n x »n identity matrix. Hence the matrix B
is an 8(J+1) x 8(J + 1) matrix of the form

B = diag [RD,, RM, My, . (9.7)

Similar to Bis the 8(J + 1) x 8(J + 1) discretized form of 4 corresponding to the right
side of (8.2). Here, the rows 1, 2, J, J+1, J+2 and 2(J+1) of 4 are zero to
incorporate the boundary conditions on w, and w,. This means that six eigenvalues
of the discretized problem will always be zero.

Now it is fairly easy to assemble the matrix form of 4 and the only point to
remember is that rows corresponding to the exterior mesh points 0 and J for the
constitutive equations contain the equations at z =0 and z =1, not at z = —}Az,
z=1+3Az.

Having assembled the matrices 4 and B, the eigenvalues of B™'4 were computed
using a standard NAGLIB routine. Now, if A or R is zero, then B becomes singular and
the eigenvalue problem must be reformulated to accommodate these cases. Although
this is not difficult to do and indeed has been done by Walsh (1986) for B = 0, it is
much easier to simply put A or R off zero by a very small amount (say 10~* using the
pseudo-arc-length continuation method). Since the eigenvalues vary continuously
with these two parameters their change is also very small when the parameters
increase from zero. This method thus provided an entirely adequate treatment of the
singular cases within the above scheme.

To illustrate the results from the calculations, which generally take about ten
minutes per problem, we consider the Example Set I from §6. Keeping the values of
R=0,8=0.5,y=—0.5 fixed, the calculated points in the (o, A) plane have been
compared with the theoretical curves arising from the equation (8.11). The results are
depicted in figure 16 above.

Next in the above example, we keep the parameters § and y fixed and, using
pseudo-arc-length continuation, calculate the solution surfaces for R = 0 and B ~ 0.1
with varying A. The curves in figure 17 are obtained, showing a complicated structure
of bifurcations and folds; in connection with the folds, see figure 6 for their location.
The dotted lines in figure 17 represent expected extrapolations into regions where the
numerical method developed convergence problems. We now give a description of
the various branches.
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s Betstiies. aeae..
Sl a (£ O\ )\ A
DN ..
Figure 17. Solution surfaces with varying A, for R =0 and R = 0.1. Here f= 0.5 and y =—0.5
are fixed.
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Figure 18. Stability of solutions with y = 0.5, A = 3.6 fixed while R and f are varied.
See figures 8 and 9 in connection with this.

R = 0:Branches A, B, C, D, E.
R ~ 0.1:Branches F, G, H, 1.

Branch A is the torsional flow and is valid for all A > 0. The flow is stable up to
the first bifurcation point at A = 1.481, then becomes unstable acquiring a further
positive eigenvalue with each bifurcation point crossing on the A axis. See figure 16
in connection with this.

Branch F was found to be stable, as expected by R-continuation from A in this
region. All other branches B, C, D, E, G, H and I were found to be unstable. Each
of these showed positive eigenvalues o which could be identified as the continuation
(in R or A) of the (positive) eigenvalues o, (A) and o,(A) belonging to the torsional flow
branch A.

The next figure 18 illustrates the solution surfaces associated with the Example Set
II. Keeping v =0.5 and A = 3.6 fixed, we have constructed the curves of w,(z)
against f# at the mesh point nearest to z = 0.5. Denoting by the dashed curve, the
unstable solution and by the continuous curve the stable one, it is found that the
simple bifurcation point for R = 0 at # = 0.311 is seen to develop into a fold as R
increases. See figure 10 in this connection where the position of the limit point in the
Rp-plane is depicted. It is found that an exchange of stability occurs at the limit
point.
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PART B. NON-AXISYMMETRIC MOTIONS

In this part, we begin in §10 with the equations that govern the non-axisymmetric,
steady flows of the Oldroyd-B fluid in the two-disc configuration. After discussing the
kinematics (Parter & Rajagopal 1984; Huilgol & Rajagopal 1987) we list the
constitutive equations satisfied by the stress functions (Huilgol & Rajagopal 1987),
the modified stress functions obtained by using the transformations listed above in
§3 and the equations of motion in terms of the latter. In addition, some alterations
are also made to the modified stress functions due to a change in the boundary
conditions to make the latter independent of the parameter a, which is a measure of
the non-axisymmetry. Full details are available in the Appendix.

In §11, we provide the numerical results obtained by combining the results of §5,
§6 and §10. Thus, we are able to exhibit many examples of the non-axisymmetric
flows of the Oldroyd-B fluid in the two-disc configuration. The physical significance
of the non-axisymmetric flows lies in their importance in torsional flow rheometers
where they will arise due to a misalignment of the two discs.

10. Steady non-axisymmetric flows

A A

Let (£, 4,%) denote the cartesian coordinates and let these be non-dimensionalized
through (cf. (3.1)):

t=wd, j=yd, Z==zd. (10.1)
Let the velocity field & be scaled as in (2.3), i.e.
b=0Q,0, (10.2)

where £, denotes the steady, angular velocity of the bottom disc situated at z = 0.
Now, let (u,v, w) denote the velocity components of the field v such that (cf. Parter
& Rajagopal 1984 ; Huilgol & Rajagopal 1987):

w =l —yG+ay,

v=xG+yF —aof, (10.3)

w=—2F,

where F, G, f, and g are all functions of the coordinate z, and the prime denotes
differentiation with respect to z. The functions F, G are the axisymmetric
components, whereas f, g are the non-axisymmetric ones. The boundary conditions
are the same as (3.3) for the functions ¥, G, while the new functions f, g are required

to meet:
f(0) =0, g¢(0)=0,
f@ =1, g3 =0, (10.4)
fi)y=0, g(1)=

In (10.4), the boundary conditions on z =0 and z = 1 follow from the adherence
conditions, whereas on the plane z =1 a measure of non-axisymmetry has been
introduced through f(3). In fact, it is easily seen from (10.3) that on the plane z =1
as (x,y)—(0,0), the in-plane components (u,v)— (0, —a). Hence, the non-axi-
symmetric equations depend on the parameter a and thus we have a one-parameter
problem and in order to emphasize this, the constant o has been included in (10.3).

Now, let the velocity field (10.3) be substituted into the constitutive equation
(2.4). It is found that the stress tensor S is a quadratic in « and y, with coefficients
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that are functions of z. Indeed, the components of .S, denoted by S{ij>, have the
following representation (Huilgol & Rajagopal 1987)

2
S<7’-9> = E Sijkm xkymﬂ 7;’.9 = 1127

k+m=0

1

k+m=0
S<33)> = S;300-

There are, in fact, twenty five stress functions in (10.5). The reader’s attention is

directed to the Appendix for a discussion of the equations satisfied by S,,,,, and the

modified functions T},

The equations of motion for the velocity field (10.1) can be derived quite easily
when use is made of the representation of the stresses in (10.5). One obtains (Huilgol
& Rajagopal 1987):

2Silzo +S~/1121 +§/1/310 =—2R(FF"+GG"),
Sii11 + 281202 + 81301 = 2RFG —F'G),
Sti10+ 81201+ 87300 = Ba( fG+fG +F'g—F'g' —2Fg"),
Sla10 T Sh001 + 85300 = Ba2f ' F+fF' —fF"+9G" +¢'G).
As shown clearly by Huilgol & Rajagopal (1987), the first two of the above equations
are the axisymmetric flow equations (3.7) and (3.9) in the new coordinate system, and
hence they determine the functions ¥, . The next two are to be used to find the new
functions f, g. The reader’s attention is drawn once again to the Appendix, where the

conversion of (10.6) to a system which is easier for computational purposes has been
made. Thus we arrive at the following eight equations:

T1110 + /\[29T11 + 2fT12 - 29/T13 _F/Tluo + GT2201 - 2F”T1300
—2FT5550+4(1 = B) (A(gF" +fG") F" —g'F")] = 0,
T1101 + /\[29/7’23 - 29T12 - 2fT22 _F/TIIOI - G’Tzzm + 2G/T1300
—2FT10, +4(1=p) (9’ ' = AgF" +/G") &')] = 0,
T2210 + /\[ZQTzz - 2fT12 + Qf/Tza _F/T2210 + GT1101 - 2G/Tmoo
—2F T35, +4(1 =) (MG —fF") &' +['G')] = 0,
T2201 + /\[29T12 - 2an + 2f’T13 _F/T2201 - GT1110 - 2F”T2300
—2FTyy0, +4(1—B) (A(gG —fF") F" +f"F")] = 0,
Tiao0 + AlgT s +[Toy—9 Tao +F Ty300 + G300 — 28 T30
+(1=p)Bg'F +gF" —29"F + fG'—f'G)] = 0,
T2300 + /\[gTza _fT13 +f/T30 +F/T2300 - GT1300 - 2FT;300
+(1=p)(9G" —g'G+2f"F —fF" = 5f"F)] = 0,
375110~ Taoro+ 2T 500+ 29" = 2R(gF" +f' G+ fG' = 29"F —g'F"),
3T %901 — Thio1 + 2T 5300 — 2f" = 2R(9'G+gG" —fF" + 2f"F + f'F"). J
What the above system tells us is that, given the functions F, &, T},, ..., T},, the
functions f, ¢, Ti110s ---» Thge are uniquely determined because (10.7) is linear. Hence

for every axisymmetric flow, given the non-axisymmetry parameter « in the centre
plane, there is a unique non-axisymmetric flow.

ifkm

(10.6)

(10.7)
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As an example, we now list from Huilgol & Rajagopal (1987) the analytical
solution to the system (10.7) when the underlying axisymmetric flow system is the
rigid body motion. They introduced the following new function (Berker 1979;
Huilgol & Rajagopal 1987):

N(z) = f(z)+1ig(z), (10.8)
where i = —1, and showed that N(z) must satisfy
N" =iR(1—iA)N'/(1—iAp). (10.9)
The above third order equation has the following solution:
N(z) =A,+4,em*+4,e"*, (10.10)
where u,, it, are the two roots of
W =1iR(1—iA)/(1—iAp). (10.11)

The three constants 4,,4,,4, in (10.10) are found quite easily from the conditions
(10.4) on f and g. Although we have decided not to draw the functions f and ¢, it is
clear that they possess a complicated structure.

Next, for a newtonian fluid, if the basic flow is the torsional flow, the non-
axisymmetric flow components are easily obtained. Putting A =0, R =0 in (10.7)
one finds that

fz) =42(1—=2), ¢g(z)=0. (10.12)
On the other hand, despite numerous attempts, it has not been possible to obtain an
analytic solution to the equations which describe the non-axisymmetric components
in the Oldroyd-B fluid arising from a basic flow which is the torsional flow. Given this
situation, for more general basic flows, it is obvious that the only way to solve the
system (10.7) is through numerical means and we exhibit some examples in §11.

11. A numerical study of non-axisymmetric flows

As stated in the previous §10, there is a unique non-axisymmetric flow for every
axisymmetric flow and, in this section, we choose some axisymmetric flows and find
the non-axisymmetric flow components Af, g that correspond to the former. Here, Af
is the excess of f over the newtonian torsional flow contribution (10.12), i.e

Af(z) = f(z) —42(1—2). (11.1)

Although it is possible to generate many solutions a restriction arises from the fact
that the system may become stiff due to the coefficients, which depend on the
axisymmetric flow components, becoming very large. Hence, we do not include the
problematic cases, only showing the relatively easy solutions.

(@) Example Set 1

The first set consists of those flows with = 0.5, v =—0.5. Hence these non-
axisymmetric flows correspond to those in the Example Set I in §6. We depict two
specific situations:

(i) If the basic flow is the torsional flow and R = 0 is kept fixed, then a bifurcation
oceurs at A = 1.481. If we use regular continuation until A = 2.0 is reached, then the
functions Af and g have the forms shown in figure 19. Note that neither Af nor g is
symmetric about the centreline although F and AG are (see figure 2).

(ii) If we keep A = 2.0 fixed and vary R from zero to 0.24, then figure 20 results.
Again the non-axisymmetric flow parts are not symmetric.
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Figure 19. Solution on bifurcation branch obtained from figure 2 with B = 4.3 x 10713, A = 2.0.
s g5 s Af'
Figure 20. Solution at limit point in figure 3 with R = 0.24 and A = 2.0. ——, ¢; ——— , Af.
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Figures 21-24. ——, g; ——— , Af.

Figure 21. Flow corresponding to that in figure 7 when R =50 and £ =0.98, the almost
newtonian fluid.

Figure 22. Flow corresponding to that in figure 8 when R = 0.73 and £ = 0, the Maxwell fluid.
Figure 23. Flow associated with the limit point flow in figure 9 when R = 0.1 and £ = 0.3.
Figure 24. Flow at the first limit point arising from figure 14 with y = —0.0055, A = 0.05.

(b) Example Set 11

Here there are three examples with vy = —0.5 and A = 3.6 fixed and thus we are
dealing with the situations corresponding to the Example Set II in §6. From the
Maxwell fluid (# = 0) to the almost newtonian fluid (§ = 0.98) the patterns of Af and
g change as can be seen in figures 21-23.
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(c) Example Set VI

Here, corresponding to that in figure 14 of the Example Set VI in §6 is the figure
24.

In summary, it can be seen that the non-axisymmetric flow components are not
symmetric about the centreline z = 0.5 even if the axisymmetric parts are. In this
connection, see figures 25 and 26 below as well.

12. Concluding remarks

The present work has explored in detail the solutions that arise in the coaxial disc
problem for the Oldroyd-B fluid. First and foremost, the use of a robust numerical
scheme, capable of dealing with regular and limit point bifurcations, has shown that
the high Weissenberg problem is not a real one. That is to say, we have been able to
generate solutions for values of the parameter A as high as 4.0. Hence previous
difficulties in dealing with high values of this parameter are consequences of the
numerical schemes used therein. For example, y,, = —0.5 used by Walsh (1987)
corresponds to 4 = — 1 here and from (6.1) we see that this means a relaxation time
A = 0.15 which is far less than 4.0. We note that Ji ef al. (1990) have also achieved a
numerical -value of 4.0 in their work. Similarly, the values of W =14, y,=1
correspond respectively to A = 1.4, y = 2. The results for the latter can be read off,
on account of the Scaling Lemma, from those for the set (A, 9) = (2.8, 0.5). In sum,
the range of relaxation parameter values achieved here surpasses those in the work
of Walsh' (1986, 1987).

We now '‘comment on the figures 2—-5. The effect of increasing the relaxation time
A can be seen in connection with the torsional flow when R = 0. This flow remains
symmetric about z = 0.5 till A reaches 2.0 (see figure 2). Comparing these curves with
those in fig. 26 and ¢ of Walsh (1987), we see that the effect of increasing the
retardation time from £ = 0 (or 8, = 1) to # = 0.5 is to reduce the deviation from the
torsional flow.

After that as R is increased to 0.24, the symmetry is broken (see figure 3). More
striking are the flow curves in figures 4 and 5 which show the results of varying both
A and R. Our results here are similar to those obtained by Ji et al. (1990) in their
figures 3-5.

The last part of figure 6 shows in detail the way folds appear and disappear in the
RA-plane as R is increased from 0 to 2.0, while A goes from 1.2 (before any bifurcation
occurs) to 4, passing through four bifurcations in the process. The attention of the
reader is also drawn to the figure 17 which shows the stable and unstable branches
associated with the above set of flows.

The next set of figures 7-10 demonstrate the combined effects of varying both R
and g, with figure 18 depicting the stability of the related flows. The other figures
11-15 are self-explanatory in the details they reveal about the solution surfaces
associated with the Oldroyd-B fluid.

In figures 19-24, we have drawn the non-axisymmetric flow components arising
from the set of axisymmetric flows. Again, there is a wide variety of possible flow
situations.

In conclusion, one can say that the relaxation and the retardation parameters
cause the flow to deviate from the torsional flow. The deviation, however, is not
significantly large on primary branches. On secondary branches or those reached
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(x107) Figure 25
0.4

-2
(x107%) Figure 26
0.2

-0.2

-0.4

-1.2
Figure 25. Slip-layer associated with the torsional flow with R=0, #=0.1, y=2 and
A =2.054.

Figure 26. Slip-layer associated with the secondary branch from the torsional flow for the same
values of the four parameters R, 5, y, A.

from a different sheet (cf. figure 14), the deviation can be considerable. This is also
the opinion expressed by Ji et al. (1990).

The situation with respect to non-axisymmetric flows is rather different. Relatively
large differences from the newtonian non-axisymmetric flow components occur quite
readily as may be seen from figures 19-24.

We shall now turn to a comparison with the experimental results of Sirivat ef al.
(1988). They found experimentally that in the axisymmetric flows of a non-
newtonian fluid, namely a solution of polyacrylamide, deviations from the newtonian
velocity field were small; however, they also noticed that narrow regions of high
velocity gradients associated with the tangential velocity fields appeared in the
polyacrylamide solution. Our theoretical results are in agreement with these
observations for, as already stated, deviations from the newtonian velocity field are
small on primary branches. Concurrently, an examination of figures 4 and 5 reveals
the existence of relatively moderate steep velocity gradients. However, our results
from axisymmetric flows do not reveal the existence of slip-layers seen in figures 6d,
7b and 9 of Sirivat ef al. (1988). On the other hand, if a small misalignment in the
apparatus existed, then it is more than likely that non-axisymmetric flows occurred
in the apparatus used by Sirivat et al. Then, it may be seen from figs 2 and 3 of
Crewther & Huilgol (1988) dealing with non-axisymmetric flow components
(reproduced here as figures 25 and 26 respectively) that slip-layers may exist in the
flow of an Oldroyd-B fluid in the two-disc configuration.

The research reported here was begun by R.R.H. during his stay at the California Institute of
Technology as a Senior Fulbright Fellow in 1983. R.R.H. thanks the Australian-American
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Appendix

Before we begin it is necessary to draw the attention of the reader to the following:
we wish to emphasize that the components b”u used in the present paper are
obtained from the S, listed in (A 15)—(A 25) of the paper by Huilgol & Rajagopal
(1987) after making the following adjustments.

(i) Replace 9, by 1; (ii) replace A, by A; (111) replace A, by Af; (iv) change @ to 26G;
(v) change I to 2I7; (vi) change f to af; (vii) change ¢ to ag.

With these in mind, we proceed.

As remarked in §10, there are 25 stress functions in the non-axisymmetric low
situation when the flow is described in the cartesian coordinates (x,y,z). Of these,
14 stress functions S,,50, S1109: - Sss00 are determined by the axisymmetric flow
functions K and ' alone, that is to say, these 14 appear in the axisymmetric
flow. The reason there are 14, rather than the six important ones in §3 has to do with
the coordinate system that has been chosen. Indeed, it is easy to show by considering
the change of coordinates from (x,y.2z) to the (r,0,z) system that the following
relations hold between the various stress functions mentioned above:

‘81120 = Szzoz = Sll> Suoz = Spag0 = S22=

51111 = _82211 = _2812’ SIZZO 81202 = 812 (A 1)
Sien1 =811 =S 81310 Soz01 = Sia
S1301 = _‘82310 = S23, 83300 S

Hence the system in §3 yields the 14 stress functions S|, ..., 8550, in (A 1) and
there is no reason to calculate them afresh. Now the system of ordinary dlfferentlal
equations satisfied by the remaining 11 stress functions, namely S
822107Szzovszzooa8121()7S12()1a81200=S1300 and Sy, is required.

It is necessary to modify these stress functions further in order to simplify the task
of computing the functions f and g. To this end, observe that the constitutive
equations for S,,,, and S,,,, are not really needed because

S~1210 = %(52201_571101%1
81201 = %(Suw_szzlo)J

Hence, only nine out of the 11 stress functions are required. Next, we transform
these remaining nine functions through:

1110° 1101> S1100>

(A 2)

q R, J _ ol J 7 G

Siio = Thigs St = 2Ty Si100 = Ti100 +2F,

J _ 7 J _ il q _m YL b
Sast0 = 20100 Sasor = 2Ty So200 = Tag00 +2F". (A 3)
q — 7] q _ 1 ’ q — 7] v

S1200 = Ti200> Siz00 = L1500 +2g s Sage0 = o Tyg09 —tf".

In addition to (A 3), we change the functions S;; to the corresponding 7}; of (3.5). The
result of these transformations is a set of nine constitutive equations for the stress
™ M < 7} 7] ol ” 1 7] 2l 7] 1 A N
functions 7101, Th110: Th100: Tasor: Toaro: Tonos Trzoos Tisoos @0 Thygo. It turns out that we

do not need all the nine stress functions because three of the functions, namely 7},
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T\500: T390 have no role to play in the equations of motion and are determined by
the remaining six functions. Thus, we substitute in the constitutive equations the
relevant transformations from (A 3) for the six functions 71,4, Zh101> Ze0100 Th201> Tisoo
and Ty, replace the functions S,,,8,,,...,.S; by the respective 7}; from (3.5) and
cancel out the common factor o that appears in all the six equations. The end result,
along with the modified equations of motion, comprise eight equations in all and
these are listed in (10.7).
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